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Unraveling bacterial strategies for spatial exploration is crucial for understanding the complexity in the
organization of life. Bacterial motility determines the spatiotemporal structure of microbial and controls
infection spreading and the microbiota organization in guts or in soils. Most theoretical approaches for
modeling bacterial transport rely on their run-and-tumble motion. For Escherichia coli, the run-time
distribution is reported to follow a Poisson process with a single characteristic time related to the rotational
switching of the flagellar motors. However, direct measurements on flagellar motors show heavy-tailed
distributions of rotation times stemming from the intrinsic noise in the chemotactic mechanism. Currently,
there is no direct experimental evidence that the stochasticity in the chemotactic machinery affects the
macroscopic motility of bacteria. In stark contrast with the accepted vision of run and tumble, here we
report a large behavioral variability of wild-type E. coli, revealed in their three-dimensional trajectories. At
short observation times, a large distribution of run times is measured on a population and attributed to the
slow fluctuations of a signaling protein triggering the flagellar motor reversal. Over long times, individual
bacteria undergo significant changes in motility. We demonstrate that such a large distribution of run times
introduces measurement biases in most practical situations. Our results reconcile the notorious conundrum
between run-time observations and motor-switching statistics. We finally propose that statistical modeling
of transport properties, currently undertaken in the emerging framework of active matter studies, should be
reconsidered under the scope of this large variability of motility features.

DOI: 10.1103/PhysRevX.10.021004 Subject Areas: Biological Physics,
Interdisciplinary Physics, Soft Matter

I. INTRODUCTION

The run-and-tumble (R&T) strategy developed by bac-
teria for exploring their environment is a cornerstone of
quantitative modeling of bacterial transport. In this para-
digm, bacteria swim straight during a run time, undergo a
reorientation process during a tumbling time, and pursue
thereafter the next run in a different direction. The now
standard vision of the R&T strategy was established in the
1970s for swimming Escherichia coli by Berg and Brown
[1,2], based on 3D trajectories obtained via a Lagrangian

tracking technique. They proposed that an adapted bacte-
rium would perform, over long times, an isotropic random
walk composed of the run-and-tumble phases, both dis-
tributed in time as a Poisson process [1–5]. For quantitative
analysis, the run-time and tumble-time distributions
are often taken as Poisson processes with typical values
τ̄run ∼ 1 s and τ̄tumble ∼ 1=10 s [2,6]. These values change
in the presence of chemical gradients, leading to a biased
random walk known as chemotaxis.
Alongside the relevance of this result in the context of

biology, medicine, or ecology, fluids laden with motile
bacteria have become an epitome for active matter, where
the organization of active particles recently led scientists to
revisit many concepts of out-of-equilibrium statistical
physics [7–10]. Suspensions of motile bacteria are systems
of choice for these studies [11], and many original
phenomena such as anti-Fick’s law migration [12], collec-
tive motion [13], viscosity reduction [14–16], enhanced
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diffusion [7], or motion rectification [17–20] have been
discovered. Most recent theoretical studies on active matter,
aimed at understanding the emergence of collective motion
or other macroscopic transport processes in bacterial fluids,
assume uncorrelated orientational noise, which is the
direct consequence of the Poisson character of the R&T
process [9].
The simple approach of introducing a Poisson distribu-

tion for the run times, although useful for simple qualitative
interpretations, is not fully consistent with a growing
number of measurements performed on the individual
rotary motors [21–25] driving the helix-shaped flagella.
For E. coli, the forward (run) motion is associated with the
counterclockwise (CCW) rotation of the motors, and the
tumbles take place when the motors rotate clockwise (CW).
The CCW to CW transition is regulated by an internal
biochemical process associated with the phosphorylation of
the CheY protein.
In a seminal work, Korobkova et al. [21] brought

evidence for a heavy tail distribution for the duration of
CCW rotations. Importantly, this highlights possible cou-
pling between the stochastic fluctuations in the chemotactic
biochemical network and the emergent bacterial motility.
Its consequences could affect the macroscopic organization
of bacterial populations, chemotactic response to chemical
heterogeneity, and genetic and epigenetic feedback of
bacterial populations to environmental constraints.
Its potential importance in the context of active matter

studies remains overlooked. For multiflagellated bacteria,
the correspondence between switching statistics, motor
synchronization, flagellar bundling and unbundling dynam-
ics, and, finally, large-scale exploration properties remains
unclear. Recently, indirect experimental evidence suggested
that the macroscopic motility of free-swimming bacteria is
sensitive to the stochasticity borne by the chemotactic
biological circuit [26]. Here, we give direct evidence of this
sensitivity.
Conceptually, our analysis starts from the extreme

sensitivity of the rotational CCW → CW switching to
the abundance of the phosphorylated protein CheY-P in
the cell. This picture induces a timescale separation, since,
at short times, the alternation of CCW and CW rotations
keeps a memory of a quasifixed level of CheY-P. This
memory is erased at longer times, and we thus expect
very different run times and motility features at the
macroscopic level.
For the first time, we link the individual motor rotation

statistics to the global motility features that we observe in a
large number of 3D trajectories of wild-type E. coli
bacteria. At short observation times, the time persistence
of the swimming orientations displays an exponential
decay as classically admitted, but with a large distribution
of characteristic times within a population of monoclonal
bacteria. However, when tracking the cells individually
over several tenths of minutes, we identify for each

cell a large behavioral variability. The motility data are
quantitatively analyzed through a simple model initially
proposed by Tu and Grinstein [27] involving the fluctua-
tions of CheY-P triggering the tumbling events. The model
is here adapted to render the spatial exploration process.
It now explains the occurrence of a large behavioral
variability of swimming direction and also why, at short
observation times, a large distribution of these is expected
over a population. The central outcome of this model is that
the persistence time durations naturally follow a log-normal
distribution, instead of a standard Poisson distribution.
Importantly, we identify a source of measurement bias
introduced in most practical situations that is a consequence
of such a large distribution of run times. Finally, we discuss
the consequences of measuring averaged quantities over a
population displaying a large distribution of motility
features. This source of measurement bias is relevant in
the general framework of experiments on statistical physics
of active matter.

II. VARIABILITY OF BACTERIAL
MOTILITY IN A POPULATION

To characterize the bacterial motility, we build an auto-
mated tracking device suited to follow fluorescent objects
and record their 3D trajectories. A swimming bacterium is
kept automatically in the center of the visualization field and
at the focus of an inverted microscope by a visualization
feedback loop acting horizontally on a mechanical stage and
vertically on a piezo stage. The method is fully detailed in
Ref. [28] byDarnige et al. (see also Sec. VI) andwas recently
used to investigate the swimming of bacteria in a Poiseuille
flow [29].
We first monitor more than 100 swimming E. coli

from different strains (see Sec. VI) in homogeneous
diluted suspensions (concentration ∼105 bactmL) con-
fined between two horizontal glass slides, 250 μm apart.
Figure 1(a) shows two typical trajectories from the same
batch of monoclonal wild-type E. coli. We center our
analysis on pieces of tracks exploring the bulk [Fig. 1(b)],
i.e., in a measurement region located 10 μm above the
surface and of maximum height H ¼ 130 μm. For this
series of experiments, the duration of a track is at minimum
8 s. We name these experiments I.
The bacterial velocities V⃗ðtÞ at each point of the

trajectories are obtained by fitting the sequence of coor-
dinates, along X, Y, and Z independently, over segments
spanning 0.1 s, using a second-order polynomial. The first
derivative of the polynomial evaluated at the center of the
segment provides the velocity component. Figure 2 shows
an example of a 3D trajectory and its velocity. Typically, the
velocity curves for each track are irregular [Fig. 2(b)]. For a
single track, the velocity distribution [Fig. 2(c)] shows a
peak corresponding to the run phase and a low-velocity tail
that might correspond to tumbling events. For the wild-type
strain RP437 in a motility buffer, the average of the peak
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values for V ¼ jV⃗ðtÞj over the different tracks is hVi ¼
27� 6 μm=s.
Standard analysis to extract run-time distributions relies

on the identification of tumbling events, usually done by
detecting velocity drops and/or abrupt changes in the
swimming direction [2,6,30]. However, as shown in
Figs. 2(a) and 2(b), abrupt direction changes can take
place without a representative velocity decrease, and
velocity drops are sometimes not associated with reorien-
tation. This observation is consistent with results from
Refs. [30,31]. Moreover, by directly monitoring the flag-
ellar dynamics, Turner et al. [31] identify partial flagellar
debundling inducing weak velocity drops and directional
changes. We find that, without a direct observation of the
flagella, run-and-tumble detection requires the choice of
arbitrary criteria. We demonstrate this arbitrariness in the
Appendix A.
Here, in order to characterize the motility features, we do

not seek to explicitly identify the tumbling events. Instead,
we use the orientation correlation functionCðΔtÞ as a direct
measurement of the swimming direction persistence. The
director vectors pointing along the track are determined as
p⃗ ¼ V⃗ðtÞ=VðtÞ for each track. For each trajectory, we
compute CðΔtÞ¼ hp̂ðtÞ · p̂ðtþΔtÞi¼ hcos½θðΔtÞ�i, where

θ is the angle between swimming directors separated by a
time lagΔt [Fig. 1(b)]. The brackets denote an average over
a time window sliding along the track. To ensure good
statistics, the maximum lag time Δt is chosen as one-tenth
of the total track duration. The orientation correlation
reflects the R&T statistics but advantageously does not
require an ad hoc criterion. In Fig. 3(a), 30 orientation
correlation functions obtained from separate tracks of
different bacteria (RP437 wild type in M9G) are displayed
as a function of Δt.
From the classical picture of an exponential distribution

of run times, the orientation correlation function is expected
to decay exponentially with a typical decay time of τp,
defining the persistence time of the trajectory. For a
characteristic run time of τ̄run ¼ 1 s and a distribution of
reorientation angles of mean value θm ¼ 51° [1], one finds
τp ¼ ðτ̄run=1 − hcosðθÞiÞ ¼ 1.5 s [32]. Recently, a slight
dependence of this angle on the swimming speed was
demonstrated [33] but is neglected in our study. Taking into
account rotational Brownian diffusion during the run phase
also leads to an exponential decaying correlation function
(see Appendix B). Its contribution represents a slight
modification to τp due to the much longer timescales of
Brownian diffusion. The predicted correlation function is

(a) (b)

FIG. 1. Lagrangian 3D tracking of bacteria and analysis conditions. (a) RP437 wild-type E. coli displaying very different typical
trajectories: persistent trajectory (bact 1: τp ¼ 12 s) and nonpersistent trajectory (bact 2: τp ¼ 0.7 s). (b) Sketch of the part of the track
used for analysis and angles used for computing CðΔtÞ ¼ hp̂ðtÞ · p̂ðtþ ΔtÞi ¼ hcos θðΔtÞi, using a sliding window for an average on
time t.

T

(a) (b) (c)

FIG. 2. Details of a typical trajectory. (a) 3D trajectory and its projection on the x-y plane, (b) velocity vs time, and (c) velocity
distribution. The marks every 5 s in the 3D track are references for comparison with (b).
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represented by the dotted line in Fig. 3(a). Strikingly, the
experimental curves display a broad scattering, indicating a
very large distribution of persistence times within this
monoclonal population of bacteria.
By fitting the correlation functions with an exponential

decay expð−τ=τpÞ, we determine the persistence times τp
for each track. In Fig. 3(b), we display them on a
logarithmic vertical axis for the strain RP437 in a motility
buffer (MB) and a MB supplemented with serine (MB-S).
In addition, persistence times obtained in a richer medium
(M9G) and for a different wild-type strain AB1157 in

MB-S are shown. The results prove that the distribution of
orientation persistence times for wild-type bacteria is very
large. Within statistical errors, they are independent of the
chemical environment (poor or rich), but they could depend
on the strain, being larger in average for the 11 measure-
ments performed on AB1157. For the very persistent
tracks, the observed decorrelation remains weak over the
accessible time lags. The obtained persistence times thus
have a significant uncertainty, but we can be sure that their
decorrelation time will be at least bigger than the time span
of the track (τp > 8 s). Finally, we consider the strain
CR20, a smooth swimmer that tumbles only very rarely.
In this case, the time distribution is gathered around the
average τp ¼ 25� 10 s, which is close to the Brownian
rotational diffusion constant τp ¼ τB¼ 1=2DB

r , as expected.
This value is, however, strongly dependent on the bacterial
dimensions and aspect ratio [34,35]. A bacterium modeled
as an ellipsoid of semiaxes a ¼ 4 μm and b ¼ c ¼ 0.4 μm
has a persistence time τp ∼ 22 s, while with a ¼ 6 μm it
has a persistence time 3 times larger, τp ∼ 66 s [36].
Therefore, the wide distribution of persistence times
for CR20 could arise from the bacterial size distribution.
A possible origin of this dispersion on the measurement
protocol is discussed in Sec. IV C.

III. VARIABILITY OF INDIVIDUAL
BACTERIAL MOTILITY OVER TIME

The large diversity of trajectories here observed over
short times in bacterial populations leads to the question of
its origin. The diversity could arise from a phenotype
multiplicity present in the monoclonal population [37,38],
where each bacterium is characterized by a mean run time;
alternatively, it could be due to temporal variability of the
bacterial behavior, with mean run times varying over the
course of time. To determine which scenario is taking place,
we perform a second series of measurements, experiments
II, where we follow individual bacteria over very long times
(up to 20 min). In the new configuration, the top and bottom
of the measurement chamber are within the observation
range or the 3D tracker device. We follow individual
bacteria as they alternate between the surfaces and the
bulk, as sketched in Fig. 4(a). For the analysis, individual
tracks are cut in pieces localized entirely in the bulk (10 μm
away from the walls). For each piece, we extract the
persistence time from the correlation function. Finally,
for each bacterium, we obtain a list of persistence times
as a function of time. If the population displayed a large
distribution of fixed run-times, one would expect for each
bacterium a sequence of persistence times narrowly dis-
tributed around a characteristic value, but this value would
be different for different bacteria. Figure 4(b) carries a very
different message. For each of the tracks tested, the
persistence times span a range of the same magnitude as
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FIG. 3. Swimming orientation correlations. Experiments I.
(a) Correlation function CðΔtÞ obtained for 30 tracks of different
RP437 bacteria in M9G, showing a large distribution of persist-
ence times. The correlation functions are fitted with an expo-
nential decay expð−τ=τpÞ to extract the persistence times τp. The
dotted line corresponds to τp ¼ 1.5 s as expected from Ref. [1].
Inset: Correlation functions as a function of Δt rescaled by τp.
The dashed line is expð−xÞ. (b) Persistence times for individual
bacteria of wild-type strains RP437 and AB1157 and smooth
swimmer mutant CR20 in different media (MB, MB-S, and
M9G). Circles and uncertainty bars correspond to the mean and
68% confidence intervals for each group. The blue background
region designates the cutoff from Brownian diffusion. The dotted
line corresponds to the expected τp ¼ 1.5 s also represented in
(a). Uncertainty bars indicate the mean and confidence interval
at 68%.
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for the whole population using shorter tracking times
(see Fig. 3).
Previous studies based on 3D Eulerian tracking tech-

niques [33,39], i.e., on a fixed reference frame, or even the
Lagrangian tracking technique [6] were limited to short
observation times and, consequently, were not able to catch
such slow fluctuations of the run time. The fact that for a
given bacterium the sequence of persistence times is largely
distributed confirms the importance of behavioral variabil-
ity in the motility process. However, due to tracking time
limitations imposed by the bleaching of the fluorescent
signal, we are not able to test precisely to what extent the
behavioral variability contains features which could vary
from one bacterium to the other, stemming from inherent
phenotype variations, as identified, for example, by Dufour
et al. [40].

IV. MOTILITY AND MOTOR ROTATION
STATISTICS

The presence of a behavioral variability, as identified
earlier, raises the question of its biochemical origins.
Previous results point toward a definite influence of a
stochastic process in the chemotactic sensory circuit. At the
end of the biochemical cascade, there is a phosphorylation
of a CheY protein (CheY-P) promoting a switch in the
motor rotation from the CCW state (run phase) to the CW
state (tumbling phase). The most accepted picture render-
ing the CCW⇌CW transition is a two-state model initially
proposed by Khan and Macnab [41], which considers the

switching of the rotation direction CCW → CW (equiv-
alently, CW → CCW) as an activated process regulated by
the presence of CheY-P. The double-well Gibbs free energy
associated with the transition CCW⇌CW depends in a
very sensible way on the CheY-P ([Y]) concentration values
near the motor, as shown by Cluzel, Surette, and Leibler
[42]. This strong sensitivity leads naturally to behavioral
variations, as slow fluctuations around the mean value can
change the motility features from preferentially tumbling
(high CheY-P) to preferentially running (low CheY-P). It
also means that at short times the CheY-P level does not
change significantly and motility features remain constant.
Therefore, at a given moment, the motility features should
be largely distributed in a population of bacteria bearing
different CheY-P concentrations. This large distribution
is in essence what is observed in our experiments in
Figs. 3 and 4.

A. Quantitative description of the
behavioral variability model

To rationalize and quantify our experimental findings,
we adapt the simple but enlightening physical model
proposed by Tu and Grinstein [27]. The behavioral vari-
ability (BV) model we present here quantifies the role of
fluctuations of the phosphorylated protein CheY-P in the
regulation of the motor-switching statistics. The key idea is
that the observed typical switching time at a given moment
depends on the instantaneous CheY-P concentration ½Y�ðtÞ.
Then, considering concentration fluctuations around a
mean value (δYðtÞ ¼ ½Y�ðtÞ − ½Y0�), one obtains a two-state
model with a time-varying barrier describing the CCW →
CW switching process. Tu and Grinstein model the δY
fluctuations as an Ornstein-Uhlenbeck process with a
memory (relaxation) time TY , hence yielding a Gaussian
distribution for δY values. Note that TY is considered to be
larger than typical motor-switching times [see Fig. 5(a) for
the relevant timescales].
For small fluctuations of concentration, the average

switching time can be written as

τs ¼ τ0e−ΔnδX: ð1Þ

Here, δX corresponds to the fluctuations in concentration
normalized by the δY standard deviation σY ; τ0 is a typical
switching time corresponding to the mean concentration
½Y0� and Δn ¼ αðσY=Y0Þ. The parameter α is positive [42]
and measures the sensitivity of the switch to variations in
[Y], which means that higher concentrations of CheY-P
lead to shorter run times. Note that, in principle, the two
switching times describing CCW → CW (run times) or
CW → CCW (tumbling times) could be modeled with
corresponding parameters τ0 and Δn. However, as the
results from Korobkova et al. [21] show that, in contrast
with run times, the distribution of tumble times is expo-
nential, meaning that the equivalent of Δn for tumbles is
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FIG. 4. Analysis for long tracks. Experiments II. (a) Sketch
indicating the pieces of track from the same trajectory selected for
demonstrating the behavioral variability. (b) τp for pieces of track
from the same trajectories, for 33 different RP437 bacteria in
MB-S. The color represents the starting time of the measurement.
Each bacterium displays a large variation of persistence times.
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small. Hence, we consider the tumbling times as a
Poissonian process, well described by a single timescale.
Let us first consider the CCW → CW switching time

distributions. Each observed time belongs to a Poisson
distribution with a typical time τs set by the current CheY-
P concentration ½Y�ðtÞ [see Eq. (1)]. As a consequence, the
observed switching statistics for an individual bacterium,
when observed over a time interval shorter than the memory
time, should approximately appear as an effective Poisson
process, which is indeed the case, as shown from the collapse
of the rescaled orientation correlation functions onto a single
exponential decay shown in Fig. 3(a). The model provides a
second important outcome. A random choice of a bacterium
in a population is like a random choice of δX, hence defining
a typical switching time τs for this bacterium. A Gaussian
distribution for δX, as assumed by the BV model, leads to a
Gaussian distribution of lnðτsÞ characterized by an average
lnðτ0Þ and a standard deviation σln τp ¼ Δn, yielding natu-
rally a large log-normal distribution of τs provided the switch

sensitivity α is large. Note that the power law distribution
discussed by Tu and Grinstein [27] is obtained in the limit of
very large Δn and not in contradiction with the above
statement. As τs and τp are proportional, the distribution
of lnðτpÞ should also be Gaussian.
To illustrate this idea, a very long 3D trajectory is

synthesized numerically using the switching statistics from
the BV model. Figure 5(b) shows a 2D projection (see
Sec. VI for technical details and Sec. IV C for the parameter
values). The simulated trajectory contains very persistent
(inset I) and very nonpersistent (inset II) parts. The colors
represent the local values of δX illustrating the direct
influence of the slow variations of CheY-P concentration
on the bacterial motility, hence explaining the observed
behavioral variability.

B. Memory time

The evolution of persistence times τp along individual
trajectories displays large variations. It is shown in Fig. 6(a)

CCW

CW

(a) (b)

FIG. 5. Heuristic view of the behavioral variability model. (a) Timescales of the tumbling process and the CheY-P concentration
governing them. The switching time τs represents the local average of the stochastic run times τCCW. The switching time τs stays
relatively constant during the memory time TY and evolves as a function of the normalized CheY-P concentration:
δX ¼ ð½Y� − ½Y0�Þ=σY . (b) 2D projection of the simulated 3D trajectory where the δX fluctuations drive the tumbling process. The
insets correspond to different levels of [δX]: Inset I depicts a low CheY-P level, and inset II depicts a high CheY-P level.
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FIG. 6. Determination of the memory time from experiments II. (a) Persistence times τp computed over pieces of span 20 s and shifted
5 s for two different bacteria. Gaps larger than 5 s between consecutive points correspond to lapses in which the bacteria are swimming
close to surfaces. (b) Persistence times self-correlation function Cp using pieces of 20 s. Points represent the average over the ensemble
of bacteria. (c) Correlation time of the persistence times as a function of the lengths of the pieces. We extract the memory time to be
TY ¼ 19.0� 1.3 s.
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for the case of two different bacteria continuously tracked
for 11 and 17 min. The values of τp for each track are
extracted from intervals of span 20 s shifted 5 s along the
trajectory. Gaps larger than 5 s between consecutive points
correspond to lapses in which the bacterium is swimming
close to a surface. Analyzing, for example, the bacterium of
the blue longer trajectory, at time 300 s (5 min) it displays a
persistence time close to 0.1 s, in contrast with a persistence
time close to 5 s around time 1000 s (∼17 min). This
temporal variation of τp is considered in the framework of
the BV model. The memory time TY is then a central
parameter of the BV model, as it provides a natural
separation between short-time measurements and long-time
measurements. Therefore, for a correct statistical interpre-
tation of the results, τp values must be extracted from
pieces of tracks not longer than the memory time TY .
We estimate the memory time TY from the long-time

tracking data in experiments II, using the following pro-
cedure. For each bacterial trajectory, we compute a sequence
of τp using intervals of a specific duration. For each sequence
of τp, we compute the self-correlation function of persistence
times,CpðtÞ ¼ hln τpðtþ t0Þ ln τpðt0Þi − hln τpi2, where the
average is done over t0. The average ofCp over the ensemble
of trajectories is fitted with an exponential, giving the
correlation time [Fig. 6(b)]. With this procedure, we
investigate different lengths of intervals [Fig. 6(c)], finding
that the correlation times grow with the duration of the
interval until saturation at the value of the memory time
TY ≈ 19.0� 1.3 s.

C. Comparison with the model

The BV model depends on several parameters: the
memory time TY , the mean switch time and sensitivity
τ0 and Δn, respectively, the rotational diffusion coefficient
DB

r , and the dimensionless rotational diffusion coefficient
D̃eff

r used to model the reorientation during tumble (see
Sec. VI for details). We determine TY from the experi-
ments, while the rest of the parameters are fitted using the
following protocol. A long simulated trajectory is gener-
ated and cut in pieces of duration 20 s, similar to the
analysis of the experimental tracks, and the persistence time
is computed for each piece. We look for the values of the
parameters that best agree with the experimental values of
the first four moments of the distribution of ln τp. The result
is τ0¼ 1.53 s, Δn¼ 1.62, DB

r ¼ 0.025 s−1, and D̃eff
r ¼ 3.86.

Note that the velocity does not appear in the fit, because we
compare simulations and experiments using the persistence
times, which depend only on the orientations.
Figure 7(a) compares the experimental distribution of

ln τp with the results from simulations using the optimal
parameters. The agreement is very good, with two features
that need discussion. First, in agreement with the BV
model, the distributions are not exactly Gaussian but

present a negative excess kurtosis. With 63% probability,
the switch times are in the range ½τ0e−Δn ; τ0eΔn � ¼
½0.30 s; 7.7 s�. Hence, there is no complete separation of
timescalewithTY . As a consequence, in each piece, δX is not
constant, and the measured and simulation distributions
result from the mixture of different values of τs. Note that
shorter pieces would imply too few tumble events and would
make it unreliable to use the orientation correlation function.
A perfect log-normal distribution could be observed if there
was a good separation of timescales, allowing a choice of
intervals such that τ0 ≪ T interval ≪ TY .
The second feature is the small peak at ln τp ≈ 3 in the

simulations. This peak corresponds to pieces of the
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FIG. 7. Probability density function of the logarithm of persist-
ence times ðln τpÞ. (a) The values τp are extracted from pieces of
track from experiments II that last 20 s. Simulations using two
differentmodels are shown: The Poissonmodel does not reproduce
the experiments, while the BVmodel reproduces themain features.
(b) The experimental distribution corresponds to the combined
RP437 bacteria in all media, from Fig. 3 in experiments I. “BV
model experiment constraints” are determined from the same
simulations of “BV model” but analyzing pieces of trajectories
that follow the experimental constraints in this case. It reproduces
experiments I without additional free parameters.
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trajectory where no single tumble took place. The change in
orientation is due only to rotational diffusion during a run.
Because τB ¼ 1=2DB

r ≈ 20 s is similar to TY , no complete
reorientation occurs in the interval, resulting in a distribu-
tion of τp for nontumbling swimmers. In fact, the persist-
ence times for the nontumbling bacteria [strain CR20 from
experiments I, Fig. 3(b)] coincide with this peak. This
feature should also be present in experiments, but, as
discussed in Sec. II, DB

r depends strongly on the bacterial
dimensions, which vary within the population. This
dispersion of rotational diffusion and other imperfections
blur this peak in the experiments, contrary to the simu-
lations, where all swimmers are identical. Note that, despite
of the diversity, the fitted value of DB

r matches closely the
prediction made in Sec. II for ellipsoidal swimmers.
Since the pieces of trajectories are of a finite length, the

orientation correlation function is not perfectly sampled,
and, even for a constant switch time τs, the persistence
times τp obtained from an exponential fit would present
some dispersion. To test whether the observed dispersion is
due only to the data analysis protocol, we perform
simulations with a Poisson model. For this test, we look
for the best parameters to reproduce the first fourth
moments of the distribution of ln τp, setting Δn ¼ 0. The
result is τ0 ¼ 1.18 s, DB

r ¼ 0.026 s−1, and D̃eff
r ¼ 1.61.

Figure 7(a) presents the resulting distribution, which is far
from the experimental one. We conclude that a Poisson
process cannot explain the broad distribution of persistence
times observed experimentally.
Finally, for consistency, we return to the persistence

times obtained in Fig. 3 from experiments I. In this
experimental protocol, the trajectories are selected within
a certain height (10–140 μm from the surface) and longer
than 8 s. The corresponding experimental distribution of
lnðτpÞ for RP437 bacteria in all media [Fig. 7(b)] displays a
clear positive skewness, which differs strikingly from the
experimental measures of Fig. 7(a), done using the same
bacterial strain and confinement and a similar chemical
environment. This difference originates from a measure-
ment bias built into the analysis of Fig. 7(b) (and Fig. 3).
The bias is a consequence of a preferential selection of long
trajectories staying essentially in the x-y plane, with limited
bounds in the vertical direction. The skewness is enhanced
by the broad distribution of run times, since very persistent
swimmers will likely quit the measurement region in a very
short time, hence privileging small persistence times. The
curve “BVmodel” represents the distribution of persistence
times from simulations of the BV model that fit the
experiments in Fig. 7(a) (experiments I). When this same
simulation is analyzed by taking pieces following strictly
the experimental constraints, on both duration and vertical
spatial exploration, the resulting distribution (“BV model
experiment constraints”) compares very well and notice-
ably without any additional fitting parameter, to the
experimental curve in Fig. 7(b) (experiments II).

V. CONCLUSIONS

We have shown that the 3D spatial exploration of an
adapted E. coli reflects a behavioral variability that we
associate with intrinsic noise in the chemotaxis pathway
controlling the run-and-tumble sequence. Our results for
free-swimming bacteria are consistent with models describ-
ing motor-switching dynamics based on tethered cell
measurements. We identified a large log-normal distribu-
tion of persistent times stemming from the slow fluctua-
tions of an internal variable accounting for the CheY-P
concentration near the motors. In the context of many
recent works on statistical physics of active matter, we
suggest that this large variability should be included in the
description of bacterial fluids. This variability is expected
to influence the computation of averaged quantities like
diffusivity, viscosity, or any constitutive relations of macro-
scopic transport processes.
The broad distribution of run times is likely to introduce

measurement biases in practical situations. Here, we reduce
the bias by taking pieces of trajectories of equal length, not
larger than the memory time. Mixing trajectories of different
lengths can result in highly distorted distributions.
The large distribution of motility features has been related

to the time bacteria spend close to surfaces. As an example,
the existence of a large distribution of motor-switching
statistics was found crucial to understand large-scale
upstream bacterial contamination of narrow channels [26],
where substantial transport occurs along surfaces [43–46].
We expect the chemotactic drift to be sensitive to the

distribution of CheY-P concentrations, since a nonlocal
spatiotemporal coupling will take place between chemical
gradients and bacterial concentration. This sensitivity
should be taken into account in future motility modeling.
Finally, these findings may also impact quantitative mod-
eling on how bacterial populations react to environmental
changes, colonize space, swarm in a biofilm [47], or
interact with other communities.

VI. MATERIALS AND METHODS

A. Bacterial strains and culture

We use the wild-type strains RP437 and AB1157 and a
smooth swimmer mutant strain CR20 (ΔCheY) expressing
yellow fluorescent protein (YFP) from a plasmid. Bacteria
are grown overnight at 30 °C in M9Gmedium [M9 minimal
medium supplemented with glucose (4 g=L), casamino
acids (1 g=L), MgSO4 (2 mM), and CaCl2 (0.1 mM)] plus
the corresponding antibiotics, up to optical density ¼ 0.5 at
595 nm. Cells are then washed 3 times by centrifugation at
2000 g for 5 min and suspended in a motility buffer (10 mM
potassium phosphate buffer pH ∼ 7.0, 0.1 mM EDTA,
1 μM L-methionine, and 10 mM sodium L-lactate), sup-
plemented with polyvinylpyrrolidone (PVP-360 kDa
0.002%) and, when indicated, with L-Serine (0.04 g=mL).
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B. The 3D Lagrangian tracker

We develop a device for keeping individual microscopic
objects—as swimming bacteria—in focus, as they move in
microfluidic chambers [28]. The system is based on real-
time image processing, determining the displacement of the
stage to keep the chosen object at a fixed position in the
observation frame. The z displacement of the stage is based
on the refocusing of the fluorescent object that keeps the
moving object in focus. The algorithm for z determination
is designed for not being affected by photobleaching.
The instrument is mounted on an epifluorescent inverted

microscope (Zeiss-Observer, Z1) with a high magnification
objective (100 × =0.9 DIC Zeiss EC Epiplan-Neofluar), an
x-y mechanically controllable stage with a z piezomover
from Applied Scientific Instrumentation (ms-2000-flat-top-
xyz), and a digital camera ANDOR iXon 897 EMCCD.
The device works nominally at 30 frames per second on a
512 × 512 pix2 matrix, but a faster tracking speed of 80 Hz
can be achieved by reducing the spatial resolution to
128 × 128 pix2. It provides images of the object and its
track coordinates with respect to the microfluidic device.
The tracking limitations come essentially from the z

exploration range, restricted by the working distance of
150 μm of the objective. In the x-y plane, the spatial
limitations are virtually nonexistent, since the stage dis-
placement can be as long as 15 cm, which is much bigger
than the typical sizes of the sample (a few millimeters).
Details of the apparatus are given in Ref. [28], as well as an
exhaustive explanation of a method for correcting the
mechanical backlash typically affecting these systems and
a discussion of the device’s performance and limitations.

C. Experimental geometries and bacteria tracking

Wemonitor hundreds of singleE. coli in a drop of a diluted
homogeneous suspension (concentration ∼105 bact=mL)
squeezed between two horizontal glass slides. The drop
has typically a diameter of 1 mm. The gap between the two
glass plates is 250 μm. For experiments I, displayed in
Fig. 3, only pieces of 3D trajectories remaining between the
vertical bounds zm ¼ 10 μm from the bottom surface and
zM ¼ 140 μm, the highest possible height, and lasting more
than 8 s are taken into account. For the set of very long tracks
in Fig. 4, experiments II, the gap between the glass plates is
also 250 μm, but the whole trajectories are captured, as they
alternate between the bottom and top. For the analysis, only
pieces farther than 10 μm from the surfaces are taken into
account.
The velocities are determined from second-order

Savitzky-Golay filtering of the coordinates over 0.1 s,
resulting in uncertainties close to 5% [36]. For each track,
the velocity distribution shows a peak corresponding to the
mean run velocity and a low-velocity tail corresponding to
the contribution of sudden velocity drops (Fig. 2). Peak

velocities are on average hVi ¼ 27� 6 μm=s. To compute
the correlation function CðΔtÞ, the average is made over
time, and the lag time is offset by 0.2 s to avoid the short-
time decorrelation due to wobbling [36,48]. The correlation
function is then normalized by its value at 0.2 s to yield 1 at
the lag time origin.

D. Track simulations using the BV model

Swimmers are described by their position r⃗, orientation
p̂, and the instantaneous value of the normalized fluctua-
tions of the CheY-P concentration δX ¼ ð½Y� − ½Y0�Þ=σY .
During the run phase, they obey the equations

_r⃗ ¼ Vp̂; ð2Þ

_̂p ¼
ffiffiffiffiffiffiffi
DB

r

p
ðI − p̂ p̂Þη⃗ðtÞ; ð3Þ

_δX ¼ −δX=TY þ
ffiffiffiffiffiffiffiffiffiffiffi
2=TY

p
ξðtÞ; ð4Þ

where V is the swim velocity, DB
r is the rotational diffusion

coefficient, TY is the memory time, ðI − p̂ p̂Þ is a projector
orthogonal to p̂, ξ is a white noise of zero mean and
correlation hξðtÞξðsÞi ¼ δðt − sÞ, and η⃗ is a white noise
vector of zero mean, where the components have correla-
tions hηiðtÞηkðsÞi ¼ δikδðt − sÞ.
The BV model yields a relation between the character-

istic switching time for the transition CCW → CW (run to
tumble) and the CheY-P concentration. As a simplification,
we assume that, due to the small cellular dimensions, all six
flagella operate at the same CheY-P concentration and that
the reverse of the rotation direction of a single flagellum is
enough to trigger a tumble. Hence, the probability to
tumble in Δt would be 6Δt=τs. To simplify notation, we
absorb the factor 6 into τ0, resulting in a tumble proba-
bility ΔteΔnδX=τ0.
The BV model predicts that the characteristic switching

time for the transition CCW → CW (tumble to run) is also
given from an activated process. But, as the corresponding
value of Δn is small, the tumble duration is given by a
Poisson process with characteristic time τ1. In addition, the
reorientation dynamics during a tumble needs to be
modeled. A priori, the link between motor switch and
tumble is far from being trivial, as, in principle, one needs
to account for the hydrodynamically complex bundling and
unbundling process of the multiflagellated E. coli bacteria
[49,50]. Here, we rather follow a simple effective approach
inspired by Saragosti, Silberzan, and Buguin [51]. We
model the reorientation dynamics during tumbling as an
effective rotational diffusion process with a coefficientDeff

r .
Defining the dimensionless combination D̃eff

r ¼ Deff
r τ1, the

dimensionless tumble durations are sorted from an expo-
nential distribution with a typical time equal to one, and,
during a tumble, the dynamics is
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_r⃗ ¼ 0; ð5Þ

_̂p ¼
ffiffiffiffiffiffiffiffi
D̃eff

r

q
ðI − p̂ p̂Þη⃗ðtÞ; ð6Þ

_δX ¼ 0: ð7Þ

After the tumble phase, a new run phase starts.
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APPENDIX A: RUN DURATION ANALYSIS

Figure 8 displays a series of analyses on a single
trajectory, evidencing that tumble detection is criterium
dependent. Here, we set a threshold velocity, cutoff V, and
identify as runs all the continuous parts of the track where
the bacterial velocity is above the prescribed threshold. The
plot demonstrates that, by changing the cutoff value for the
velocity, we can obtain average run times of duration 1–8 s.

APPENDIX B: PERSISTENCE CORRELATION
FUNCTION

The orientation correlation function is defined as

CðτÞ ¼ hp̂ðtÞ · p̂ðtþ τÞi ¼ hcos½θðτÞ�i; ðB1Þ

where p̂ is the director vector and the average is done over
time t.
To compute the correlation function, we use a kinetic

theory approach. The object under study is the distribution
function fðp̂; tÞ, which gives the probability that a bacte-
rium has an orientation p̂ at time t. In this context, the
correlation function is obtained assuming that the initial
condition at t ¼ 0 is with the bacterium pointing in a
specific direction, say, p̂0. Hence, we have to compute
CðτÞ ¼ hp̂ðτÞ · p̂0i, where now the average is over the
distribution function. At the end, another average, over p̂0,
should be done. In practice, this last average is unnecessary
by the isotropy of space, because the first average gives
already a value independent of p̂0.
The distribution function obeys the kinetic equation

[52,53]

∂f
∂t ¼ −Lf; ðB2Þ

with

fðp̂; 0Þ ¼ δðp̂ − p̂0Þ ðB3Þ

and L the evolution operator. Two models must be
considered. In the case of Brownian rotational diffusivity,

Lf ¼ −DB
r∇2

p̂f; ðB4Þ

where DB
r is the rotational diffusion coefficient and ∇2

p̂ is
the angular part of the Laplacian. In the case of tumbling
with a characteristic switch time τs,

Lf ¼ 1

τs

�
f −

Z
dp̂0Wðp̂0; p̂Þfðp̂0Þ

�
: ðB5Þ

The kernel Wðp̂0; p̂Þ gives the probability that for a
swimmer with director p̂0, after tumbling, the new director
is p̂. It is normalized to

R
dp̂Wðp̂0; p̂Þ ¼ 1, indicating that

some director p̂ must be chosen. If the space is isotropic,
the kernel depends only on the relative angle between the
directors, that is,Wðp̂0; p̂Þ ¼ wðp̂0 · p̂Þ. Finally, if tumbling
and diffusion are present, the operator is just the sum
of both.
If the space is isotropic, the evolution operator is also

isotropic, which in this case implies that it commutes with
the angular Laplacian ∇2

p̂. Therefore, both operators share
eigenfunctions, which are the spherical harmonics Ylmðp̂Þ.
Then, there are eigenvalues λl,

0
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FIG. 8. Average run duration as a function of the threshold in
bacterial velocity (cutoff V). The runs are identified as continuous
parts of the track where V > cutoff V. The plot demonstrates that
an arbitrary choice of velocity drops along the trajectory leads to
arbitrary run-time duration. Inset: Log-normal plot.
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LYlm ¼ λlYlm; ðB6Þ

that, by isotropy, do not depend on the second indexm. For
the diffusion case, the eigenvalues are known exactly, while
for tumbling they are proportional to 1=τs and depend on
the kernel model. In summary,

λl ¼ DB
r lðlþ 1Þ þ 1=ðalτsÞ; ðB7Þ

where al are dimensionless parameters of the order of 1 that
depend on the kernel w.
Using the basis of the spherical harmonics, the solution

of the kinetic equation (B2) is

fðp̂; tÞ ¼
X
lm

flmð0ÞYlmðp̂Þe−λlt; ðB8Þ

where flmð0Þ depend on the initial condition (B3).
Now, the correlation function is

CðtÞ ¼ hp̂ðtÞ · p̂0i ðB9Þ

¼
Z

dp̂p̂0 · p̂fðp̂; tÞ ðB10Þ

¼
X
lm

flmð0Þe−λltp̂0 ·
Z

dp̂ p̂ Ylmðp̂Þ: ðB11Þ

Using that p̂ can be written as a linear combination of Y1m,
with m ¼ 0;�1 and the orthogonality of the spherical
harmonics, it is obtained that the integral is not vanishing
only for l ¼ 1. Combining factors, one obtains

CðtÞ ¼ C0e−t=τp ; ðB12Þ

where

τp ¼ a1τs
1þ a1τs=τB

ðB13Þ

and τB ¼ 1=ð2DB
r Þ is the Brownian decorrelation time.

In the classical picture, where all bacteria have a single
value for τs, the decorrelation time τp is single valued also.
When τs is broadly distributed, the decorrelation time τp
also follows a broad distribution for τp ≪ τB, and it is
bounded from above by τB. Finally, in the description of
Berg and Brown [1], the tumble angles are distributed with
a peak at 63°. In this case, a1 ¼ 1=ð1 − hcos θiÞ [51].
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