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Abstract. Identifying the cues followed by cells is key to understand processes as

embryonic development, tissue homeostasis, or several pathological conditions. Based

on a durotaxis model, it is shown that cells moving on predeformed thin elastic

membrane follow the direction of increasing strain of the substrate. This mechanism,

straintaxis, does not distinguish the origin of the strain, but the active stresses produce

large strains on cells or tissues being used as substrates. Hence, straintaxis is the

natural realization of duratoaxis in vivo. Considering a circular geometry for the

substrate cells, it is shown that if the annular component of the active stress component

increases with the radial distance, cells migrate toward the substrate cell borders. With

appropriate estimation for the different parameters, the migration speeds are similar

to those obtained in recent experiments [Reig et al. Nat. Comm. 2017, 8, 15431].

In these, during the annual killifish epiboly, deep cells that move in contact with the

epithelial enveloping cell layer (EVL), migrate toward the EVL cell borders with speeds

of microns per minute.
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1. Introduction

The movement of cells, either as individuals or as collectives, is critical not only for

embryonic development and tissue homeostasis but also in the origin and progression

of several pathological conditions such as cancer [for review, see [1, 2, 3]]. Cells are

able to migrate in microenvironments with different physical and chemical properties

showing adaptive behaviors. On two-dimensional (2D) culture dishes, cells frequently

show extensive lamellipodia and strong adhesion with the substrate while they produce

blebs and exhibit only mild substrate adhesion when immersed in three-dimensional

(3D) matrix gels [4, 5, 6]. Importantly, transition between these two types of migration

can be triggered by changing the mechano-chemical properties of the substrate and/or

by modulating the adhesive/contractile state of the cell [7]. For instance, changing cell

contractility by modulating the actomyosin cytoskeleton leads to transitions between

blebs and lamellipodial-mediated migration in tumor cell lines in culture [8]. Classically,

individual cell migration has been studied in 2D culture dishes coated with different

extracellular matrix (ECM) components, describing a cycle of events that leads to cell

crawling [9]. In the cycle, cells first polarize and produce cellular protrusions that

stabilize at the front upon interaction with ECM molecules such as Fibronectin, forming

macromolecular protein complexes called focal adhesions [10]. Using these cell-ECM

contacts as anchors the cell moves along the axis of polarity by detachment of the rear

side to then start a new cycle of adhesion at the front [10]. In contrast to 2D culture

dishes, cell movement within living tissues is not restricted to ECM contacts but cells

can also use other cells as substrate for migration [6, 11]. Several external guiding

cues provide directionality to the cell movement. Often, cells move along gradients of

diffusible chemical signals (chemotaxis) but they can also follow gradients of electric

potential (galvanotaxis) and substrate stiffness (durotaxis) [12, 13, 14]. Direct evidence

of durotaxis has been obtained using in vitro experiments, where a mesenchymal cell is

placed on a substrate with an inhomogeneous Young modulus, either in the form of a

step function [13] or with a smooth gradient [15]. In both cases, it has been observed that

mesenchymal cells migrate preferentially toward the regions of higher stiffness. Several

models have been proposed to explain and describe durotaxis [16, 17, 18]. In Ref. [19],

it is found that for focal adhesions, the force exerted on a protrusion and the retraction

velocity are proportional, with a constant that increases with the local effective stiffness

of the substrate which, in turn, is proportional to the substrate Young modulus. Hence,

if protrusions on opposite sides of the cell are in contact with substrates of different

Young moduli, they are able to locally sense the stiffness difference and generate a net

migration velocity.

Recently, in vivo experiments performed in early embryos of annual killifish showed

that mesenchymal-like cells of the embryonic deep cell layer (DCL) migrate using the

upper epithelial enveloping cell layer (EVL) as substrate [20]. The authors reported

that, although DCL cells are able to move autonomously in a random fashion, they

become preferentially located towards EVL cell borders [20]. Discarding other signals,
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such as chemical, as driving force and supported by results showing that mechanical

manipulations can disrupt DCL topology, the authors strongly suggested a mechanical

signal as a driving force. Specifically, increased tension/stiffness at EVL cell borders,

compared to the center of the cell, was proposed to be sensed by DCL cells to direct

their migration [20]. However, the migration process of DCL cells starts much before

they touch the EVL cell borders and thus sense the differences in stiffness, being

therefore unable to describe this migration by the usual durotaxis model. For thin

elastic membranes such as the EVL cell layer, the effective stiffness is proportional to

the membrane thickness times the Young modulus [21]. Hence, following the argumental

line of Ref. [19] it would also result in a migrating process in the direction of higher

thickness. The experiments reported in Ref.[20] show precisely the opposite as the

EVL cell borders are thinner. However, there is an important difference between the

in vivo and in vitro experiments of durotaxis as in the former, the substrate is not a

passive elastic medium but rather, active stresses are present [22]. These active stresses,

generated by the cortical actin ring and cytoskeleton of EVL cells, deform the substrate.

In this article we show that when these deformations are large as it is indeed the case

for the reported experiment, the effective stiffness of a thin membrane depends also

on the equilibrium deformation. As DCL cells sense the effective stiffness, nonuniform

deformations of the substrate can generate a mechanically induced migration toward

regions of larger strain, even if the substrate has a uniform Young modulus.

The article is organized as follows. In section 2 we extend the durotaxis model

of Refs. [23, 19] to the case of thin membranes. Section 3 presents the derivation of

the effective stiffness for substrates subject to active stresses. A simple cell model is

presented in section 4 showing that reasonable values for the deformation field produce

migration speeds that are of the same order as the observed ones. Finally, a discussion

on the model and possible ways it could be verified experimentally are presented in

section 5.

2. Durotaxis over thin elastic substrates

The process of single cell migration we aim to describe takes place in a confined space

between the epithelial EVL and the yolk cell of the early annual killifish embryo. Here,

mesenchymal DCL cells use the inner (basal) surface of the EVL to migrate, where the

protrusions adhere, while the yolk cell plays primarily a passive frictional role [20] (see

figure 1 for a sketch). The outer (apical) surface of the EVL is stress-free. The typical

thicknesses of the EVL is just a few micrometers, while the lateral size of the migrating

DCL cells is much larger, of the order of tens of micrometers. Also the lateral extension

of the protrusions are larger than the EVL thickness. Therefore, for the purpose of

computing the elastic response of the EVL, at distances larger than the thickness, it can

be modeled as a thin elastic plate. Hence, we first extend the durotaxis models presented

in Refs. [23, 19], originally developed for semi-infinite substrates, to this geometry. We

consider a flat membrane of thickness h, oriented along the x and y directions, subject
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Figure 1. Sketch of the system under consideration. In green, the mesenchymal deep

cells (DCL), in brown, the epithelial enveloping cell layer (EVL), and in gray, the yolk

cell. a) Frontal view. b)Lateral view.

to surface forces densities f in the planar directions. The displacement vector field u is

obtained from the elastic equations for thin plates of finite but small thickness [21]

(1− ν)
∂2ui
∂r2k

+ (1 + ν)
∂2uk
∂rk∂ri

=
−2 (1− ν2)

Eh
fi(r), (1)

where E is the substrate Young modulus, ν is the Poisson ratio, and i and k are the

Cartesian coordinates in the plane. Here and in the subsequent expressions, Einstein

notation is used. For a concentrated force exerted by a cell protrusion f(r) = Fδ(2)(r),

the solution of (1) is

ui(r) =
(1 + ν)

4πEh

[
(ν − 3) ln

( |r|
a

)
δik +

(1 + ν)

|r|2 rirk

]
Fk, (2)

where a is a length scale, which as usual in two dimensions, must be fitted using external

boundary conditions at a finite distance. In the case of an epithelium, this boundary

condition is naturally placed at the cell borders. The use of Dirac delta distribution

for the force, produces a displacement field that diverges at the origin. To obtain the

displacement generated by a protrusion of radius R1 (see figure 2a for a sketch), equation

(2) is averaged over the area of the protrusion, resulting in the finite displacement

〈u〉 =
3 ln(R1/a)

8πEh
F = κ−1

c F, (3)

which defines the effective stiffness κc of the substrate. We remark that it is proportional

to the membrane thickness and Young’s modulus. This is opposite to what happens

when the substrate in strongly anchored in the bottom, in which case the effective

stiffness grows when decreasing h [24, 25].

With the effective stiffness it is possible to find a relation between the retraction

speed V of a protrusion and the average force F it exerts on the substrate due to

adhesion molecules [19]. Under the condition that these molecules are in a dynamic

state, where attachment and detachment processes are equilibrated, it was found that

for small velocities, F = bV, with

b = Nac
ka
k0d

( 1

ka + k0d

) κc
1 + κc/κ̄

≡ b0
κc

1 + κc/κ̄
. (4)
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Figure 2. a) A thin membrane under a concentrated force F0 in the planar directions.

The circle of radius R1 represents the protrusion zone where the displacement field

is averaged. b) A cell with attachment points on its opposite sides, exert opposite

and equal forces on the substrate. c) Substrate subject to an homogeneous uniaxial

deformation.

Here, Nac is the number of adhesion molecules per adhesion complex, ka and k0d are the

molecular binding and unbinding rates, and κ̄ is the composite stiffness of the extra

cellular matrix and the adhesion molecules. Importantly, b is a monotonic increasing

function of κc and, therefore, the force needed to retract the protrusion increases with

both E and h.

With these elements, it is now possible to understand the first phase of durotaxis,

before the migrating cells become polarized. For simplicity, we consider just two

protrusions acting on opposite sides of the cell. These protrusions are mechanically

linked by the cytoskeleton within the cell and, by mechanical equilibrium, exert the

same but opposite force F (see figure 2b). If protrusions locate over regions where the

substrate has different Young moduli or thicknesses (hence, different values of b), the

retraction velocities will be different and the cell center will move with a speed

V =
V+ − V−

2
=
F

2

(
1

b+
− 1

b−

)
(5)

in the direction of higher values of Eh. This is the linear process of durotaxis. Later,

once the cell starts to make adhesions to the substrate, the cytoskeleton will align in

this direction, provoking the cell polarization.

3. Response of an already deformed substrate

The epithelial cell that acts as substrate is subject to active stresses generated by its own

cytoskeleton and those of neighboring epithelial cells. Already in absence of external

forces exerted by the DCL, these active stresses generate a base deformation of the

substrate, described by a displacement vector field u(0). The active stresses in a substrate

cell σA
ik balance with the elastic ones σE

ik, such that the total stress tensor σT
ik = σA

ik +σE
ik

obeys the equation for mechanical equilibrium

∂σT
ik

∂rk
= 0, (6)

with some boundary conditions imposed by the neighbor cells. The molecular motors

generate active stresses that are contractile and, as evidenced by laser ablation

experiments [26], they are strong enough to deform the epithelial cells by an important
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fraction. Under these conditions, it is not sufficient to consider the linear approximation

for the strain tensor, and the full expression in terms of the displacement vector must

be used

u
(0)
ik =

1

2

(
∂u

(0)
i

∂rk
+
∂u

(0)
k

∂ri
+
∂u

(0)
l

∂rk

∂u
(0)
l

∂rk

)
. (7)

In this article, we will assume that the elastic stresses are Hookean despite the large

deformations. Nonlinear relations could be necessary to describe fully the epithelium

but they will only change quantitatively the main conclusions of this manuscript, namely

that the large deformations can lead to directed cell migration. Hence, we consider the

linear expression for elastic stress for thin plates under longitudinal deformations [21]

σE
ik =

Eν

1− ν2 δiku
(0)
ll +

E

1 + ν
u
(0)
ik . (8)

In principle, the non-linear set of equations (6), (7), and (8) allow the computation of

u(0) for a given distribution of active stresses.

The reference state proved by the migrating cells is u(0). Under the action of the

protrusion forces f in addition to the active stresses, the epithelium will now experience a

total displacement u = u(0)+u(1), where u(1) is the additional displacement produced by

the protrusions. When mesenchymal cells migrate over the epithelium, no deformation

of the later is visible in experiments, from where we can deduce that the protrusion

forces are much weaker than those that result from the internal active stresses [27].

Hence, we can consider that |u(1)| � |u(0)|, as well as for their gradients. Then, the

equilibrium equation for u(1) can be linearized, resulting in

(1− ν)
∂2u

(1)
i

∂r2k
+ (1 + ν)

∂2u
(1)
k

∂rk∂ri
+ 2ν

(∂u(0)j
∂rl

∂2u
(1)
j

∂ri∂rl
+
∂u

(1)
j

∂rl

∂2u
(0)
j

∂ri∂rl

)
+(1− ν)

(∂u(0)j
∂rk

∂2u
(1)
j

∂rk∂ri
+
∂u

(1)
j

∂rk

∂2u
(0)
j

∂rk∂ri

+
∂u

(0)
j

∂ri

∂2u
(1)
j

∂r2k
+
∂u

(1)
j

∂ri

∂2u
(0)
j

∂r2k

)
=
−2 (1− ν2)

Eh
fi(r). (9)

As u(0) is a function of σA
ik, the elastic response given by (9) depends effectively on the

active stresses of the epithelium.

Despite its apparent complexity, (9) can be solved for the illustrative case of an

homogeneous uniaxial deformation u(0)(r) = εxx̂, where ε (not necessarily small) is

the strain, shown in figure 2c. Solving iteratively in powers of ε and then resumming

the resulting series, it is found for a concentrated force f(r) = Fδ(r) that the total

displacement is

u
(1)
i (r) =

(1 + ν)

4πEh

[
(ν − 3) ln

( |r|
a

)
δik +

(1 + ν)

|r|2 rirk

](
1− εδxk

1 + ε

)
Fk. (10)

We note that the response is anisotropic. Performing the same averaging procedure as

in section 2, the effective stiffness in the two principal directions are

κc,x =
8πEh(1 + ε)

3 ln(R1/a)
, κc,y =

8πEh

3 ln(R1/a)
, (11)
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which depend on the preexisting deformation of the substrate. In particular, κc depends

on the sign of ε, that is, if the membrane has been previously stretched or compressed.

It is found that the substrate is harder to deform in the direction of the active strain

when ε > 0, that is, when it is under the action of contractile active stresses. The

origin of this result is not immediate because it originates in the geometric non-linearity

present in (7).

As migrating cells sense the local stiffnesses κc, plugging (11) into (4) and (5),

implies that a cell generating protrusions on a predeformed substrate, will move toward

the regions of larger strains ε, presenting, what we call, straintaxis. Note that what the

migrating cell effectively responds to is the deformation strain of the substrate and not

the active stresses or the boundary conditions that generate them.

4. Model for an epithelial substrate

Recent experiments suggest that mesenchymal DCL cells migrate over the inner surface

of the EVL toward the borders of epithelial cells (see figure 3 and Ref. [20]). Here, we

aim to analyze if it is plausible that this migration can be described as a straintaxis.
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Figure 3. Left: Confocal microscopy z-stack maximum projection of an embryo. The

red line corresponds to the track followed by the cell as it approaches the border during

a period of 45 min. Numbers on the left indicate the distance to the substrate cell

border (distance=0), used to define intervals for the quantifications shown in the right

figure. Right: Quantification of the velocity (dark brown) and directionality (red) of

the cell movement. Reproduced from Ref. [20] (CC BY 4.0).

We first analyze if it is possible that contractile active stresses generate deformations

where the strain increases when approaching the cell borders. For simplicity, we

approximate the polygonal shape of the epithelium cells to a circle of radius R,

where the symmetry allows to make simple models (see figure 4a). For a radially

deformed epithelial cell u(0) = u(r)r̂, the deformation gradient in polar coordinates

is ∇u(0) = du
dr

r̂r̂ + u
r
φ̂φφφ̂φφ, resulting in the following nonvanishing components of the strain

tensor (7), urr = du
dr

+ 1
2

(
du
dr

)2
and uφφ = u/r + 1

2
(u/r)2. With the help of (8), the

nonvanishing components of the elastic stress tensor are σE
rr = E

1−ν2 (urr + νuφφ) and

σE
φφ = E

1−ν2 (uφφ + νurr).
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a) b)

Figure 4. a) Substrate cell modeled as a circle, subject to an inhomogeneous

deformation profile. b) Contractile annular alignment of the active stresses that give

rise to radially increasing strains. In both panels the light green circle represents

mesenchymal cell moving in contact with the substrate and the yellow arrow, the

resulting migrating direction.

Because the substrate is in mechanical equilibrium, (6) must be fulfilled, resulting

in the following equation for the active stresses,

1

r

d

dr
(rσA

rr)−
σA
φφ

r
=

E

1 + ν

(uφφ − urr)
r

− E

1− ν2
d

dr
(uφφ + urr), (12)

where we used that for tensors with radial symmetry, ∇ · σσσ =
[
1
r
d
dr

(rσrr)− 1
r
σφφ
]
r̂.

We first note that if the substrate is deformed only by the action of neighbor

epithelial cells and the actine ring on its border, no straintaxis can take place. Indeed, in

this case, σA
rr = σA

φφ = 0 in the bulk and the solution of (12) is a linear deformation profile

u = λr. Then, the strain tensor is uniform and no migration can take place. Hence,

to generate straintaxis, active stresses inside the cell must take place or, equivalently,

u must be nonlinear. Instead of solving (12) for giving forms of σA, we model u in the

simplest nonlinear form u = umax(r/R)2, where umax gives the deformation at the cell

border, and deduce from (12) the structure of σA. As we have one equation but two

unknowns, we must model the anisotropy of the active stress tensor. This is linked to the

microstructure of the cytoskeleton network, which is known to be highly anisotropic.

Three limiting cases are considered: either there is complete isotropy σA
rr = σA

φφ or

one component of the tensor vanishes representing a cytoskeleton with fibers perfectly

aligned, σA
rr = 0 or σA

φφ = 0. For the isotropic case the solution is

σA
rr = σA

φφ = − Eumaxr

(1− ν2)R2

[
3 + (11− ν)

umaxr

4R2

]
, (13)

where we imposed that σA
rr(r = 0) = 0. For σA

φφ = 0,

σA
rr = − Eumaxr

(1− ν2)R2

[
3

2
+ (11− ν)

umaxr

6R2

]
. (14)

In these two cases, the stresses result to be extensile (i.e. σrr and σφφ are negative) and

therefore, should be discarded. Finally, for the annular alignment of the cytoskeleton

(see figure 4b), σA
rr = 0,

σA
φφ =

Eumaxr

(1− ν2)R2

[
3 + (11− ν)

umaxr

2R2

]
, (15)

which is indeed contractile (i.e. σφφ is positive). Hence, an annular organization of

the cytoskeleton, with more activity near the borders, generate strains with gradients

pointing in the outward direction as shown in figure 4, being good candidates to account
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for the cell migration. This organization of contractile active stresses at the borders has

also been observed in small cell colonies [28].

In order for this mechanism to be a possible responsible of the observed migration,

the migration speeds must be of the order of the reported values: fraction of a µm/min

(figure 3). Equations (4), (5), and (11) give for the migration speed

V̄ =
3F

16π

log(R1/a)

b0hE

( 1

1 + ε+
− 1

1 + ε−

)
. (16)

Here, the driving force for the radial motion is ε = urr = 2umaxr/R
2+2u2maxr

2/R4, which

must be evaluated on the extremes of the migrating cell. To estimate the resulting

speed, several considerations are made. First, for the different constants appearing

in evaluating b0 in (4), we take the same values as in Ref. [19]: number of adhesion

molecules per adhesion complex, Nac ≈ 103; unstrained binding rates of adhesion

complex-extra cellular matrix (AC-ECM), ka0 ≈ 1s−1; unstrained off rates of AC-ECM,

kd0 ≈ 1s−1; composite stiffness of adhesion-ECM molecule, κ̄ ≈ 25pNnm−1; exerted

force, F ≈ 500pN. Note that many of these values were mere orders of magnitude

estimations. Second, we consider the reported migration in Ref. [20], to estimate the

substrate Young’s modulus, E ≈ 20kPa; substrate thickness, h ≈ 1µm; migrating cell

radius, Rmigrating ≈ 30µm; radius of adhesion patch, R1 ≈ 5µm; and the radius of the

enveloping layer cells that serve as substrate, R = 300µm. Finally, we took a = 1µm.

Figure 5 presents the migration speed as a function of the distance to the substrate

cell center, for various values of umax, which quantifies the deformation of the substrate.

The resulting speeds are one order of magnitude smaller than the experimental values

(see figure 3 for comparison). This can be due to the crude estimations used for the

parameters of the model, but we prefer to keep the values of Refs. [19, 20] in absence

of precise experimental values. Additionally, the migration to the borders was observed

for many cells, but the quantification of the speed was made for only one cell, lacking

therefore more precise data to compare with. Note finally that the predicted speed

decreases with distance. This a result of the saturation of b with increasing values of κc.
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Figure 5. Migration speed as a function of cell mass center position. The different

colors show the behavior for different values of umax.
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5. Conclusions and discussion

In durotaxis, cells migrate in the direction of increasing effective stiffness of the

substrate. In this article we have shown that the effective stiffness of predeformed

thin elastic membranes increases with the strain and, therefore, cells migrate toward

regions on higher strains of the substrate. The mechanism does not distinguish the

origin of this deformation but, at least for uniaxial or circular geometries, boundary

effects give rise only to uniform strains. Hence, the active stresses generated by the

cytoskeleton in epithelial substrates are the most natural origin of nonuniform strains

which, also, are known to be large. The migration by strain gradients, straintaxis,

is consequently a relevant realization of durotaxis is vivo. To quantify its importance

compared to the effect of gradients in Young modulus, a difficulty of in vivo experiments

must be overcome, which is the inability to directly measure the Young modulus.

Instead, what is measured is the effective stiffness that correlates local deformations

with the applied force [29], which we showed depends on the Young modulus, thickness

and the strain. The deformation field in tissues, on the other hand, can be measured

using traction force microscopy, tracking the temporal evolution of the tissue, or by

laser ablation. Finally, straintaxis can be tested in vitro with synthetic predeformed

substrates, with the precaution of maintaining the thin film approximation and using

nonuniform deformations. Strained substrates can also reorient cells [30, 31]. Further

studies are needed to elucidate the possible interplays between this reorientation and

the migration of cells by the mechanism described here.

Modeling the epithelial cells used as a substrate for migration with a circular

geometry, we showed that annular oriented contractile stresses, increasing toward the

border, can induce the directional motion of mesenchymal cells. The resulting speeds,

using crude estimations of the parameters, are one order of magnitude smaller than

recently reported results. This opens the need to measure in detail the different

mechanical terms involved in the model, by directly probing focal cell-substrate

complexes. The model also predicts that the elastic properties of the substrate cells are

anisotropic, feature that could be directly verified in experiments using, for example,

atomic force microscopy.

In the manuscript, we have assumed a Hookean elastic response of the substrate. It

is known that the cytoskeleton can present nonlinear elasticity. In a simple scalar form,

σ ∼ Eu + E(2)u2, with E(2) > 0, indicating that the substrate becomes stiffer under

strain. By the arguments presented here, with the model of active stresses discussed

in section 4, the migration would also be toward the cell borders. Further experiments

are needed to quantify the relative importance of the nonlinear elasticity compared to

straintaxis.
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Nature communications 8 15431

[21] Landau L, Pitaevskii L, Kosevich A and Lifshitz E 2012 Theory of Elasticity v. 7 (Elsevier Science)

[22] Morita H, Grigolon S, Bock M, Krens S G, Salbreux G and Heisenberg C P 2017 Developmental

cell 40 354–366

[23] Walcott S and Sun S X 2010 Proceedings of the National Academy of Sciences 107 7757–7762

ISSN 0027-8424

[24] Maloney J M, Walton E B, Bruce C M and Van Vliet K J 2008 Physical Review E 78 041923

[25] Banerjee S and Marchetti M C 2012 Physical review letters 109 108101

[26] Campinho P, Behrndt M, Ranft J, Risler T, Minc N and Heisenberg C P 2013 Nature cell biology

15 1405

[27] Labernadie A, Bouissou A, Delobelle P, Balor S, Voituriez R, Proag A, Fourquaux I, Thibault C,

Vieu C, Poincloux R et al. 2014 Nature communications 5 5343

[28] Mertz A F, Banerjee S, Che Y, German G K, Xu Y, Hyland C, Marchetti M C, Horsley V, Dufresne

E R et al. 2012 Physical review letters 108 198101

[29] Haase K and Pelling A E 2015 Journal of The Royal Society Interface 12 20140970

[30] De R, Zemel A and Safran S A 2007 Nature Physics 3 655

[31] De R, Zemel A and Safran S A 2008 Biophysical journal 94 L29–L31


